Angle-resolved photoemission spectroscopy of the iron-chalcogenide superconductor Fe1.03Te0.7Se0.3: strong coupling behavior and the universality of interband scattering.
نویسندگان
چکیده
We have performed angle-resolved photoemission spectroscopy of the iron-chalcogenide superconductor Fe1.03Te0.7Se0.3 to investigate the electronic structure relevant to superconductivity. We observed a holelike Fermi surface (FS) and an electronlike FS at the Brillouin zone center and corner, respectively, which are nearly nested by the Q∼(π,π) wave vector. We do not find evidence for the nesting instability with Q∼(π+δ,0) reminiscent of the antiferromagnetic order in the parent compound Fe1+yTe. We have observed an isotropic superconducting (SC) gap along the holelike FS with the gap size Δ of ∼4 meV (2Δ/kBTc ∼ 7), demonstrating the strong-coupling superconductivity. The observed similarity of low-energy electronic excitations between iron-chalcogenides and iron-arsenides strongly suggests that common interactions which involve Q∼(π,π) scattering are responsible for the SC pairing.
منابع مشابه
Kinks, nodal bilayer splitting, and interband scattering in YBa2Cu3O(6+x).
We apply the new-generation angle-resolved photoemission spectroscopy methodology to the most widely studied cuprate superconductor YBa2Cu3O(6+x). Considering the nodal direction, we found noticeable renormalization effects known as kinks both in the quasiparticle dispersion and scattering rate, the bilayer splitting, and evidence for strong interband scattering--all the characteristic features...
متن کاملAbsence of a holelike fermi surface for the iron-based K0.8F1.7Se2 superconductor revealed by angle-resolved photoemission spectroscopy.
We have performed an angle-resolved photoemission spectroscopy study of the new iron-based superconductor K(0.8)Fe(1.7)Se(2) (T(c)∼30 K). Clear band dispersion is observed with the overall bandwidth renormalized by a factor of 2.5 compared to our local density approximation calculations, indicating relatively strong correlation effects. Only an electronlike band crosses the Fermi energy, formin...
متن کاملStrong electron correlations in the normal state of the iron-based FeSe0.42Te0.58 superconductor observed by angle-resolved photoemission spectroscopy.
We investigate the normal state of the "11" iron-based superconductor FeSe0.42Te0.58 by angle-resolved photoemission. Our data reveal a highly renormalized quasiparticle dispersion characteristic of a strongly correlated metal. We find sheet dependent effective carrier masses between approximately 3 and 16m{e} corresponding to a mass enhancement over band structure values of m{*}/m{band} approx...
متن کاملNodeless superconducting gap in A(x)Fe2Se2 (A=K,Cs) revealed by angle-resolved photoemission spectroscopy.
Pairing symmetry is a fundamental property that characterizes a superconductor. For the iron-based high-temperature superconductors, an s(±)-wave pairing symmetry has received increasing experimental and theoretical support. More specifically, the superconducting order parameter is an isotropic s-wave type around a particular Fermi surface, but it has opposite signs between the hole Fermi surfa...
متن کاملAngle-resolved photoemission spectroscopy of the Fe-Based Ba0.6K0.4Fe2As2 high temperature superconductor: evidence for an orbital selective electron-mode coupling.
We have performed an angle-resolved photoemission spectroscopy study of the new superconductor Ba0.6K0.4Fe2As2 in the low energy range. We report the observation of an anomaly around 25 meV in the dispersion of superconducting Ba0.6K0.4Fe2As2 samples that nearly vanishes above T_{c}. The energy scale of the related mode (13+/-2 meV) and its strong dependence on orbital and temperature indicates...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 105 19 شماره
صفحات -
تاریخ انتشار 2010